339 research outputs found

    Water in the anthropocene: New perspectives for global sustainability

    Get PDF

    Calibration and Validation of a Regional Climate Model for Pan-Arctic Hydrologic Simulation

    Get PDF
    A number of polar datasets have recently been released involving in situ measurements, satellite retrievals, and reanalysis output that provide new opportunities to evaluate regional climate in the Arctic. These data have been used to assess a 1-yr pan-Arctic simulation (October 1985–September 1986) performed by a version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) that incorporated the NCAR land surface model (LSM) and a simple thermodynamic sea ice model to investigate interactions between the land surface and atmosphere. The model\u27s standard cloud scheme using relative humidity was replaced by one using simulated cloud liquid water and ice water after a set of short test simulations revealed excessive cloud cover. Model validation concentrates on factors relevant to the water cycle: atmospheric circulation, temperature, surface radiation fluxes, precipitation, and runoff. The model captures general patterns of atmospheric circulation over land. The rms differences from the Historical Arctic Rawinsonde Archive (HARA) rawinsonde winds at 850 hPa are smaller for the simulation (9.8 m s−1) than for the NCEP–NCAR reanalysis (10.5 m s−1) that supplies the model\u27s boundary conditions. For continental watersheds, the model simulates well annual average surface air temperature (bias \u3c2°C) and precipitation (bias \u3c0.5 mm day−1). However, the model has a summer dry bias with monthly precipitation error occasionally exceeding 1 mm day−1. The model simulates the approximate magnitude of spring runoff surge, but annual runoff is less than observed (18%–48% less among the continental watersheds). Analysis of precipitation and surface air temperature errors indicates that further improvements in both evapotranspiration and precipitation are needed to simulate well the full annual water cycle

    Influence of Arctic Wetlands on Arctic Atmospheric Circulation

    Full text link
    The Arctic’s land surface has large areas of wetlands that exchange moisture, energy, and momentum with the atmosphere. The authors use a mesoscale, pan-Arctic model simulating the summer of 1986 to examine links between the wetlands and arctic atmospheric dynamics and water cycling. Simulations with and without wetlands are compared to simulations using perturbed initial and lateral boundary conditions to delineate when and where the wetlands influence rises above nonlinear internal variability. The perturbation runs expose the temporal variability of the circulation’s sensitivity to changes in lower boundary conditions. For the wetlands cases examined here, the period of the most significant influence is approximately two weeks, and the wetlands do not introduce new circulation changes but rather appear to reinforce and modify existing circulation responses to perturbations. The largest circulation sensitivity, and thus the largest wetlands influence, occurs in central Siberia. The circulation changes induced by adding the wetlands appear as a propagating, equivalent barotropic wave. The wetlands anomaly circulation spreads alterations of surface fluxes to other locations, which undermines the potential for the wetlands to present a distinctive, spatially fixed forcing to atmospheric circulation. Using the climatology of artic synoptic-storm occurrence to indicate when the arctic circulation is most sensitive to altered forcing, the results suggest that the circulation is susceptible to the direct influence of wetlands for a limited time period extending from spring thaw of wetlands until synoptic-storm occurrence diminishes in midsummer. Sensitivities in arctic circulation uncovered through this work occur during a period of substantial transition from a fundamentally frozen to thawed state, a period of major concern for impacts of greenhouse warming on pan-Arctic climate. Changing arctic climate could alter the behavior revealed here

    Impair-then-Repair: A Brief History & Global-Scale Hypothesis Regarding Human-Water Interactions in the Anthropocene

    Full text link
    Water is an essential building block of the Earth system and a nonsubstitutable resource upon which humankind must depend. But a growing body of evidence shows that freshwater faces a pandemic array of challenges. Today we can observe a globally significant but collectively unorganized approach to addressing them. Under modern water management schemes, impairment accumulates with increasing wealth but is then remedied by costly, after-the-fact technological investments. This strategy of treating symptoms rather than underlying causes is practiced widely across rich countries but leaves poor nations and many of the world\u27s freshwater life-forms at risk. The seeds of this modern “impair-then-repair” mentality for water management were planted long ago, yet the wisdom of our “water traditions” may be ill-suited to an increasingly crowded planet. Focusing on rivers, which collectively satisfy the bulk of the world\u27s freshwater needs, this essay explores the past, present, and possible future of human-water interactions. We conclude by presenting the impair-then-repair paradigm as a testable, global-scale hypothesis with the aim of stimulating not only systematic study of the impairment process but also the search for innovative solutions. Such an endeavor must unite and cobalance perspectives from the natural sciences and the humanities

    Uncertainties in Precipitation and Their Impacts on Runoff Estimates

    Full text link
    Water balance calculations are becoming increasingly important for earth-system studies. Precipitation is one of the most critical input variables for such calculations because it is the immediate source of water for the land surface hydrological budget. Numerous precipitation datasets have been developed in the last two decades, but these datasets often show marked differences in their spatial and temporal distribution of this key hydrological variable. This paper compares six monthly precipitation datasets—Climate Research Unit of University of East Anglia (CRU), Willmott–Matsuura (WM), Global Precipitation Climate Center (GPCC), Global Precipitation Climatology Project (GPCP), Tropical Rainfall Measuring Mission (TRMM), and NCEP–Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (NCEP-2)—to assess the uncertainties in these datasets and their impact on the terrestrial water balance. The six datasets tested in the present paper were climatologically averaged and compared by calculating various statistics of the differences. The climatologically averaged monthly precipitation estimates were applied as inputs to a water balance model to estimate runoff and the uncertainties in runoff arising directly from the precipitation estimates. The results of this study highlight the need for accurate precipitation inputs for water balance calculations. These results also demonstrate the need to improve precipitation estimates in arid and semiarid regions, where slight changes in precipitation can result in dramatic changes in the runoff response due to the nonlinearity of the runoff-generation processes

    Tapping Environmental History to Recreate America’s Colonial Hydrology

    Get PDF
    To properly remediate, improve, or predict how hydrological systems behave, it is vital to establish their histories. However, modern-style records, assembled from instrumental data and remote sensing platforms, hardly exist back more than a few decades. As centuries of data is preferable given multidecadal fluxes of both meteorology/climatology and demographics, building such a history requires resources traditionally considered only useful in the social sciences and humanities. In this Feature, Pastore et al. discuss how they have undertaken the synthesis of historical records and modern techniques to understand the hydrology of the Northeastern U.S. from Colonial times to modern day. Such approaches could aid studies in other regions that may require heavier reliance on qualitative narratives. Further, a better insight as to how historical changes unfolded could provide a “past is prologue” methodology to increase the accuracy of predictive environmental models

    Analyzing the discharge regime of a large tropical river through remote sensing, ground-based climatic data, and modeling

    Get PDF
    This study demonstrates the potential for applying passive microwave satellite sensor data to infer the discharge dynamics of large river systems using the main stem Amazon as a test case. The methodology combines (1) interpolated ground-based meteorological station data, (2) horizontally and vertically polarized temperature differences (HVPTD) from the 37-GHz scanning multichannel microwave radiometer (SMMR) aboard the Nimbus 7 satellite, and (3) a calibrated water balance/water transport model (WBM/WTM). Monthly HVPTD values at 0.25° (latitude by longitude) resolution were resampled spatially and temporally to produce an enhanced HVPTD time series at 0.5° resolution for the period May 1979 through February 1985. Enhanced HVPTD values were regressed against monthly discharge derived from the WBM/WTM for each of 40 grid cells along the main stem over a calibration period from May 1979 to February 1983 to provide a spatially contiguous estimate of time-varying discharge. HVPTD-estimated flows generated for a validation period from March 1983 to February 1985 were found to be in good agreement with both observed arid modeled discharges over a 1400-km section of the main stem Amazon. This span of river is bounded downstream by a region of tidal influence and upstream by low sensor response associated with dense forest canopy. Both the WBM/WTM and HVPTD-derived flow rates reflect the significant impact of the 1982–1983 El Niño-;Southern Oscillation (ENSO) event on water balances within the drainage basin

    An arctic hydrologic system in transition: Feedbacks and impacts on terrestrial, marine, and human life

    Get PDF
    The pace of change in the arctic system during recent decades has captured the world\u27s attention. Observations and model simulations both indicate that the arctic experiences an amplified response to climate forcing relative to that at lower latitudes. At the core of these changes is the arctic hydrologic system, which includes ice, gaseous vapor in the atmosphere, liquid water in soils and fluvial networks on land, and the freshwater content of the ocean. The changes in stores and fluxes of freshwater have a direct impact on biological systems, not only of the arctic region itself, but also well beyond its bounds. In this investigation, we used a heuristic, graphical approach to distill the system into its fundamental parts, documented the key relationships between those parts as best we know them, and identified the feedback loops within the system. The analysis illustrates relationships that are well understood, but also reveals others that are either unfamiliar, uncertain, or unexplored. The graphical approach was used to provide a visual assessment of the arctic hydrologic system in one possible future state in which the Arctic Ocean is seasonally ice free

    Effective monitoring of freshwater fish

    Get PDF
    Freshwater ecosystems constitute only a small fraction of the planet’s water resources, yet support much of its diversity, with freshwater fish accounting for more species than birds, mammals, amphibians, or reptiles. Fresh waters are, however, particularly vulnerable to anthropogenic impacts, including habitat loss, climate and land use change, nutrient enrichment, and biological invasions. This environmental degradation, combined with unprecedented rates of biodiversity change, highlights the importance of robust and replicable programmes to monitor freshwater fish assemblages. Such monitoring programmes can have diverse aims, including confirming the presence of a single species (e.g. early detection of alien species), tracking changes in the abundance of threatened species, or documenting long-term temporal changes in entire communities. Irrespective of their motivation, monitoring programmes are only fit for purpose if they have clearly articulated aims and collect data that can meet those aims. This review, therefore, highlights the importance of identifying the key aims in monitoring programmes, and outlines the different methods of sampling freshwater fish that can be used to meet these aims. We emphasise that investigators must address issues around sampling design, statistical power, species’ detectability, taxonomy, and ethics in their monitoring programmes. Additionally, programmes must ensure that high-quality monitoring data are properly curated and deposited in repositories that will endure. Through fostering improved practice in freshwater fish monitoring, this review aims to help programmes improve understanding of the processes that shape the Earth's freshwater ecosystems, and help protect these systems in face of rapid environmental change
    • 

    corecore